Zero and Few Shot Learning With Semantic Feature Synthesis and Competitive Learning
نویسندگان
چکیده
Zero-shot learning (ZSL) is made possible by a projection function between feature space and semantic (e.g., an attribute space). Key to ZSL thus learn that robust against the often large domain gap seen unseen class domains. In this work, achieved data synthesis learning. Specifically, novel strategy proposed, which prototypes vectors) are used simply perturb for generating ones. As in any synthesis/hallucination approach, there ambiguities uncertainties on how well synthesised can capture targeted distribution. To cope with this, second contribution of work model termed competitive bidirectional (BPL) designed best utilise ambiguous data. we assume each point belong class; most likely two candidates exploited fashion. third contribution, show proposed be easily extended few-shot (FSL) again exploiting (class prototype guided) BPL. Extensive experiments our achieves state-of-the-art results both problems.
منابع مشابه
Zero-shot Learning with Semantic Output Codes
We consider the problem of zero-shot learning, where the goal is to learn a classifier f : X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of semantic properties of Y to extrapolate to novel classes. We provide a formalism for this type of classifie...
متن کاملA Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...
متن کاملFeature Generating Networks for Zero-Shot Learning
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-theart approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level...
متن کاملZero-Shot Learning for Semantic Utterance Classification
We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f : X → Y for problems where none of the semantic categories Y are present in the training set. The framework uncovers the link between categories and utterances through a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts...
متن کاملPreserving Semantic Relations for Zero-Shot Learning
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2021
ISSN: ['1939-3539', '2160-9292', '0162-8828']
DOI: https://doi.org/10.1109/tpami.2020.2965534